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Abstract. We conducted a laboratory experiment to test the comparative statics 

predictions of a new approach to collective action games based on the method of 

stability sets. We find robust support for the main theoretical predictions. As we 

increase the payoff of a successful collective action (accruing to all players and only to 

those who contribute), the share of cooperators increases. The experiment also points to 

new avenues for refining the theory. We find that, as the payoff of a successful collective 

action increases, subjects tend to upgrade their prior beliefs as to the expected share of 

cooperators. Although this does not have a qualitative effect on comparative static 

predictions, using the reported distribution of beliefs rather than an ad hoc uniform 

distribution reduces the gap between theoretical predictions and observed outcomes. 

This finding also allows us to decompose the mechanism that leads to more cooperation 

into a “belief effect” and a “range of cooperation effect”. 
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1. Introduction 

The rational-choice theory of collective action comprises two main paradigms. Olson’s 

model regards collective action as a prisoners’ dilemma with only one equilibrium 

(Olson, 1965), while Schelling’s model depicts it as a tipping game with multiple 

equilibria (Schelling, 1978). Medina (2007) develops a unifying framework that covers 

both paradigms and produces novel comparative statics predictions about the effects of 

the parameters of the game on the probability of a successful collective action. In this 

paper we use a simple laboratory experiment to test some of these implications. 

The unifying framework relies on the notion of stability sets to deal with multiple 

equilibria. The method of stability sets originally proposed by Harsanyi and Selten 

(1988) and further developed and applied to collective action problems by Medina 

(2007) is a very useful theoretical tool for studying large collective action games with 

multiple equilibria. The crucial advantage of the stability-sets method is that it provides 

an assessment of the likelihood of different equilibria as a function of the payoffs of the 

game and the distribution of prior beliefs. Thus, the method can be used to generate 

clear predictions on the comparative statics of the probability of a successful collective 

action with respect to any variable that affects the payoffs of the collective action game. 

The focus of this paper is to test these comparative statics predictions using a controlled, 

randomized laboratory experiment. In particular, we concentrate on testing a key 

theoretical prediction of the new framework. The probability of a successful collective 

action should increase in line with the benefit accrued to all players involved, including 

those who do not contribute if the collective action is successful, as well as in line with 

the extra benefit obtained by those who do contribute. 

In order to test these predictions, we conducted a laboratory experiment at the 

Universidad de San Andrés and the Universidad Nacional de La Plata in the Province of 

Buenos Aires, Argentina. We recruited undergraduate and graduate students from any 

field of study and regardless of their knowledge of game theory and economics. We 

conducted 16 sessions (7 at the Universidad de San Andrés and 9 at the Universidad 

Nacional de La Plata) with 20 subjects each, totaling 320 participants. In each round of 

each session, subjects were randomly allocated into groups of 10 and asked to play a 

simple game. At the beginning, each subject has 1 point and must decide whether to 

invest it or not. The probability that the investment is successful depends on the share of 
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subjects who contribute their point. If the investment is successful, all players obtain   

points and those who contributed obtain   extra points. Depending on the values of   

and  , the game has one Nash equilibrium in which nobody contributes, or three Nash 

equilibria, one in which nobody contributes, another in which all contribute and a third 

one in which each player contributes with positive probability (the same for all players). 

We consider 4 possible treatments. Treatment 1 is the baseline free-rider Olsonian 

model with one Nash equilibrium in which nobody contributes. In treatments 2 to 4, we 

gradually increase   and/or  , inducing multiple equilibria. Furthermore, the 

probability of a successful collective action predicted by the stability-sets method is 0 in 

treatment 1 and increases to 0.25, 0.50, and 0.75 in treatments 2, 3, and 4, respectively 

(assuming initial beliefs about the expected share of cooperators are uniformly 

distributed). 

In general, we find robust support for the main theoretical predictions of the 

stability-sets method applied to collective action. As   and/or   are increased, the 

share of cooperators and, hence, the probability of a successful collective action 

increases. Analogous results are obtained for the payoffs. The effects are statistically 

significant whether or not we include controls for individual characteristics, level of 

understanding of the game as measured by performance on a quiz before playing the 

rounds, fixed effects by session, whether or not subjects are asked to report their prior 

beliefs about the expected share of cooperators, whether or not the collective action was 

successful in the previous round, and the number of players in the same group who 

decided to invest in the previous round. 

We also find that, on average, there is more cooperation than predicted by the theory 

when theoretical predictions are obtained under different assumptions regarding the 

distribution of expected cooperators. As a benchmark, we first assume that subjects’ 

prior beliefs about the share of cooperators have a uniform distribution over the interval 

[   ] for all treatments. This can be considered to be a Laplacian assumption when no 

information on prior beliefs is available. Second, in some randomly selected sessions, 

before subjects started playing, we asked them to report their prior beliefs as to the 

share of cooperators in each treatment. We find that subjects’ prior beliefs are not 

uniformly distributed and vary among treatments. Specifically, as the benefit of 

cooperation increases, subjects upgrade their assessments concerning the expected 



4 

share of cooperators. Using reported prior beliefs to compute the theoretical prediction 

regarding the probability of successful collective action reduces the gap between the 

model predictions and observed behavior. Even so, the data point to the existence of 

more cooperation than expected. 

Finally, taking into account the fact that prior beliefs vary among treatments, we 

decompose the total effect on the probability of a successful collective action into two 

analytically different effects. In particular, as the benefit of cooperation increases, 

subjects upgrade their assessments of the expected share of cooperators. We illustrate 

how to compute the change in the probability of a successful collective action attributed 

to belief upgrading (belief effect) and to an increase in the range of prior beliefs that 

induce cooperation (range of cooperation effect). 

Experiments on Collective Action and Multiple Equilibria. There are three branches 

of experimental literature connected with this work. First, there is a vast body of 

literature on laboratory experiments with public good games. Second, a large number of 

experiments that employ games with multiple equilibria have been conducted to study 

equilibrium selection. Third, there is the literature on belief elicitation, which is directly 

related to our decomposition.6 

Experiments with Public Good Games.7 Many laboratory experiments have been 

conducted with public good games with only one Nash equilibrium (see, among others, 

Marwell and Ames, 1981; Isaac, Walker and Williams, 1994; Ostrom, 1998; Cherry et al., 

2005; and Hichri, 2005). Most of these studies have concentrated on the dynamics of 

behavior in finitely repeated interactions and have found levels of cooperation that are 

significantly greater than those indicated by theoretical predictions.8 Although we also 

find more cooperation than predicted by the theory in most of our treatments and, in 

particular, in treatment 1, which has only one Nash equilibrium, the focus of our work is 

on testing the comparative static predictions of the stability-set method in the context of 

multiple equilibria. 

                                                      
6 In addition to laboratory experiments, field experiments with collective action games have also been 
conducted. See, for example, Schmitt (2000), Cardenas (2003) and Barr et al. (2012). However, none of 
them has tested the comparative statics predictions derived from the stability-set method. 
7 An extensive number of studies using variations of the design of public good experiments have been 
synthesized in Davis and Holt (1993), Ledyard (1995), Offerman (1997) and Chaudhuri (2011). 
8 Several mechanisms have been proposed to explain this phenomenon, including kindness, altruism, 
conditional cooperation, reciprocity and repetition (see, for example, Anderson, Goeree and Holt, 1998, 
and Fischbacher, Gätcher and Fehr, 2001). 
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Experiments with the probabilistic provision of public goods have a particular bearing on 

our work. In particular, Dickinson (1998) introduced uncertainty in the provision of a 

public good in a standard voluntary contribution mechanism. In his first treatment, 

there is an ex post and exogenous probability of provision while, in his second 

treatment, the probability of provision is endogenous and increasing in aggregate 

contribution levels. Likewise, in our experiment the success of the collective action is 

probabilistic and depends positively on the share of contributors. Beyond this similarity, 

the aim and approach of our work are very different, however. While Dickinson (1998) 

studies how uncertainty affects contributions, we explore how changes in the payoffs 

interact with prior beliefs to induce changes in the probability of a successful collective 

action. Another minor difference is that in our experiment the probability of a successful 

collective action reaches 1 when all players cooperate. The method of stability sets, 

however, can also be applied to a collective action model where unanimous cooperation 

does not imply a probability of successful collective action equal to 1. 

Our work is also related to the large body of literature on threshold public good games. In 

contrast to standard linear public good games, threshold public good games have 

multiple Nash equilibria. Furthermore, for a deterministic threshold, Pareto-efficient 

outcomes are sustainable as Nash equilibria (see, for example, Palfrey and Rosenthal, 

1984; and Bagnoli and Lipman, 1989). Uncertain thresholds, on the other hand, can 

restore the free-riding incentives and lead to a Pareto-inefficient set of equilibria (see, 

for example, Nitzan and Romano, 1990; Suleiman, 1997; McBride, 2006; and Barrett, 

2013). Our setting can also produce multiple Nash equilibria. Indeed, for treatments 2 to 

4, the model has three Nash equilibria: a Pareto-efficient equilibrium in which all players 

cooperate and two Pareto-inefficient equilibria, one in which all players defect and 

another in which all defect with the same positive probability.   

Several authors have experimented with deterministic thresholds. Isaac et al. (1989) 

conducted an experiment with deterministic thresholds in an otherwise standard public 

good game. They found that a rise in the thresholds typically increases contribution 

levels and decreases the likelihood that the threshold will be reached. Cadsby and 

Maynes (1998) also experimented with different thresholds in a variety of scenarios and 

obtained similar results. Croson and Marks (2000) considered a public good game with a 

deterministic threshold. They proved that the game has a set of efficient Nash equilibria 
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in which the threshold is exactly met and a set of inefficient Nash equilibria in which the 

public good is not provided. They conducted an experiment and found that the higher 

the step return,9 the higher the aggregate contributions and the greater the probability 

that the public project will be successfully funded. In our model, there is no exogenous 

threshold that we can randomize, but a variation in the payoffs induces a change in the 

tipping point beyond which players cooperate. In particular, an increase in the benefit 

from a successful collective action lowers the tipping point, which induces a higher 

probability of cooperation. Since our experiment supports this theoretical prediction, 

our results are consistent with the findings of Isaac et al. (1989), Cadsby and Maynes 

(1998) and Croson and Marks (2000). 

Many researchers have also experimented with probabilistic thresholds. Wit and Wilke 

(1998) studied the effects of environmental uncertainty in the provision threshold on 

contributions in a public good game. They found lower contributions under high 

uncertainty. Gustafsson et al. (2000) compared voluntary contributions in public good 

games with the same expected provision threshold but with different variances. They 

found that the average contribution is smaller in the high-variance group. Au (2004) also 

compared voluntary contributions in a public good experiment with fixed and uncertain 

provision thresholds. He found that the provision rate for the public good was 

significantly higher when the provision point was known precisely.10 Overall, these 

experiments suggest that uncertainty in the provision threshold makes cooperation 

harder. In our model, it is possible to induce environmental uncertainty about the 

location of the tipping point, introducing uncertainty in the payoffs. Although we do not 

have treatments that deal with this situation, it is worth noting that the theoretical 

predictions of the model are consistent with the findings reported in the experimental 

literature on probabilistic thresholds. 

Up to this point, we have stressed the commonalities between our work and the 

literature on threshold public good games. There is, however, a fundamental difference 

between the stability-set approach and threshold public good games. While in threshold 

                                                      
9
 The concept of the Step Return (SR) is analogous to the concept of the Marginal Per-Capita Return 

adapted to threshold public goods games. The SR captures the private value of moving one unit of 
resources from an individual’s private consumption to the public good. Specifically, the SR is expressed as: 

   
                                          

                            
. 

10 While Wit and Wilke (1998) and Gustafsson et al. (2000) applied a simultaneous design, Au (2004) 
obtained similar results using a sequential decision-making protocol. 



7 

public good games the provision threshold is exogenous, the stability-sets approach 

produces an endogenous threshold or tipping point that separates the space of prior 

beliefs in two regions, the stability set of cooperation and the stability set of no 

cooperation. Then, the likelihood that prior beliefs belong to the cooperation region is 

the theoretical prediction of the probability of a successful collective action. Unlike 

threshold public good games, the tipping point in our experiment depends on the payoff 

structure and, hence, changes in the payoffs lead to changes in the probability of 

cooperation. Our main focus is on testing those comparative static effects. 

Experiments with Multiple Equilibria, Selection and Learning. Our work is also 

related to a large body of literature on experiments with multiple equilibria games and 

equilibrium selection. For example, Van Huyck et al. (1990) experimented with 

coordination games; Van Huyck et al. (1991) with average opinion games; Battalio et al. 

(2001) and Golman and Page (2010) with stag-hunt games; Cason et al. (2004), 

Neugebauer et al. (2008) and Oprea et al. (2011) with hawk-dove games; and Haruvy 

and Stahl (2000) with symmetric normal-form games with multiple Nash equilibria. 

There is also a large body of literature on tests of equilibrium selection theories in 

multiple equilibrium games with repeated interactions. See, for example, Van Huyck et 

al. (1990, 1991) and Iwasaki et al. (2003). To the best of our knowledge, none of these 

authors has tested the predictions provided by the stability-sets method. Only Golman 

and Page (2010) use a related approach, but for a very different purpose, namely, to 

compare cultural learning with belief-based learning. They consider a class of 

generalized stag-hunt games in which agents can choose from among multiple 

potentially cooperative actions or can opt for a secure, self-interested action. Though the 

set of stable equilibria is identical under the two learning rules, the basins of attraction 

for the efficient equilibria are much larger for cultural learning. Moreover, as the stakes 

grow arbitrarily, cultural learning always locates an efficient equilibrium while 

belief-based learning never does. In some sense, we are adopting and testing a different 

approach to multiple equilibria. Instead of focusing on identifying different criteria for 

equilibrium selection, we use the stability-sets method to obtain theoretical predictions 

of the probability of occurrence of each of the Nash equilibria of the collective action 

game. 
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Many experimental efforts have found it useful to employ the notion of quantal-response 

equilibrium (QRE), which in many cases increases the accuracy of theoretical 

predictions (McKelvey and Palfrey, 1995). The learning model that underlies the notion 

of QRE is one in which players take into account the possibility that they can make 

mistakes in their choices, that other players can also make mistakes and that, hence, 

they can be mistaken about their perceptions of other players. According to Medina 

(2013), the tracing procedure can be used to represent more general processes of belief 

formation, above and beyond the one implicitly stipulated by QRE. In particular, we can 

study how players react if they are highly confident or highly skeptical about other 

players’ cooperation levels. Indeed, we find evidence that taking into account those prior 

beliefs is an important factor in narrowing the gap between the model predictions and 

observed behavior. 

Beliefs Elicitation. Our decomposition of the mechanism that leads to more cooperation 

owing to a belief effect and a range-of-cooperation effect is related to the experimental 

work on belief elicitation. Eliciting beliefs has long been of interest to researchers 

because it contributes to an understanding of subjects’ motives.11 In the context of 

public good games, Offerman (1997) and Offerman, Sonnemans and Schram (1996, 

2001) elicited beliefs about the behavior of other agents in order to gain a deeper 

understanding of the observed results in step-level public good games. Fischbacher, 

Gächter and Fehr (2001) conducted a one-shot standard linear public good game 

experiment that directly elicited subjects’ willingness to engage in conditional 

cooperation. In one treatment, subjects were asked to make a single decision as to how 

many tokens to invest in a common fund while, in a second treatment, they were asked 

to indicate, for each average contribution level of other group members, how much they 

wanted to contribute to the common fund. The researchers found that roughly 50% of 

the subjects showed conditional behavior, i.e., their own contribution increased in step 

with the other group members’ average contribution.12 Croson (2007) experimented 

with finitely repeated, simultaneous linear public good games. Before each period, in 

some treatments subjects were asked to reveal their priors about the share of 
                                                      
11 See Schotter and Trevino (2014) for a recent survey on belief elicitation in laboratory experimental 
economics. 
12 In a similar vein, Neugebauer, Perote, Schmidt and Loos (2005) elicited beliefs regarding the reasons 
for the declining pattern of cooperation in finitely repeated games and Fischbacher and Gächter (2006) 
did so in order to measure how beliefs and contributions are correlated with public good games with 
random matching. 
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cooperators in their group. She found no significant difference in levels of contributions 

between situations in which participants revealed their priors or did not do so, but 

contributions were positively related to prior beliefs about others contributions. 

Our findings are consistent with these works. For example, we also find that, as subjects 

upgrade their assessments of the expected share of cooperators, they are more likely to 

cooperate. More importantly, a novel contribution of our study is that we propose a 

method for separating the individual contribution of changes in prior beliefs from the 

observed behavior. Thus, we show that higher benefits from a successful collective 

action lead to a higher probability of cooperation, not only because the tipping point for 

cooperation is lower, but also because subjects update their beliefs as to the share of 

cooperators. 

Advances in the Theory of Collective Action. Our work is also related to several 

advances in the formal theory of collective action. In particular, many authors have 

recently modeled collective action as a global game (see, among others, Edmond, 2008; 

Boix and Svolik, 2009; Egorov et al., 2009; Persson and Tabellini, 2009; and Egorov and 

Sonin, 2014). To the best of our knowledge, the precise relationships between the global 

game and stability-sets methods have not yet been plotted out. There are, however, 

many similarities between them. First, both approaches deal with multiple equilibria. 

Global games can be seen as a particular instance of equilibrium selection. While 

complete information games often have multiple equilibria, introducing a natural 

perturbation leads to a unique rationalizable action for each player. If players do not 

share common knowledge about the payoffs of the game, and instead rely upon privately 

observed signals with a small level of noise, the perturbation selects a unique 

equilibrium (for 2x2 games, see Carlsson and van Damme, 1993; and, for various 

generalizations, see Morris and Shin, 1998; Morris and Shin, 2001; Frankel, Morris, and 

Pauzner, 2003; and Morris, Shin and Yildiz, 2015). The problem of multiple equilibria is 

also at the core of the stability-sets method. This method partitions the space of prior 

belief profiles into regions assigned to each equilibrium and then employs the 

distribution of prior beliefs to produce an estimate of the probability of the occurrence 

of each equilibrium. 

Second, in applications of the global game approach to collective action, it is usually 

assumed that there are global strategic complementarities, i.e., a setting in which a 
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player’s incentive to cooperate (defect) increases with the likelihood that others 

cooperate (defect).13 These kinds of strategic complementarities are present in our 

model because cooperating is more attractive when the collective action is more likely to 

succeed, and the collective action is more likely to succeed when other players are more 

likely to cooperate. Finally, both approaches make it possible to perform comparative 

static analyses with respect to the underlying parameters of the model, which is the 

crucial challenge to be met by any useful collective action theory (see Medina, 2013). 

The rest of this paper is organized as follows: Section 2 presents the theoretical 

framework. Section 3 describes the laboratory experiment. Section 4 explains how it was 

determined that subjects understood the game that they were playing and that the 

randomization was balanced. Section 5 presents descriptive statistics for the main 

variables. Section 6 presents the main results of the paper. Section 7 shows a 

decomposition of a change in the predicted share of cooperators in a “belief effect” that 

captures the change in prior beliefs and a “range of cooperation effect” that captures the 

change in the range of prior beliefs that induced cooperation. Finally, Section 8 

concludes. 

 

2. Theoretical Framework 

In this section, we present a collective action model based on Medina (2007). Then, we 

adapt the model for use in a laboratory experiment. We focus on the comparative static 

results of the model under two different assumptions regarding the distribution of prior 

beliefs concerning the expected share of cooperators. First, we assume that the 

distribution of prior beliefs is fixed for the whole set of parameters of the collective 

action game. Second, we relax this assumption and assume that a change in parameters 

that increases the set of beliefs that induce cooperation leads to a new distribution of 

prior beliefs that first-order stochastically dominates the prior one. 

 

2.1. A collective action model (based on Medina 2007). Consider a set of players 

   . For each player, the set of pure strategies is           , where       and 

      denote “cooperate” and “defect”, respectively. Let    indicate a generic 

                                                      
13

 An exception is Shadmehr and Dan Bernhardt (2011).  
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element of   . The set of mixed strategies is      , and    indicates a generic element 

of      , where            and               . Let       
   , and   

indicates a generic element of  . There are two possible outcomes: either the collective 

action is a success or it is a failure, indicated by   and  , respectively. The probability 

that the collective action is successful is a function   of the proportion of players who 

cooperate. Formally,        (    ) , where       
 

 
          . Logically, 

               .   is assumed to be continuous, monotonically increasing (as the 

proportion of cooperators rises, the probability of success also increases) and      

 . The payoff for each player    depends only on the player’s action and the outcome of 

the collective action. Thus,    can be fully described with just four numbers:          

(the payoff when i cooperates and the collective action is successful),          (the 

payoff when i cooperates and the collective action does not prosper),          (the 

payoff when i defects and the collective actions is successful) and          (the payoff 

when i defects and the collective action does not prosper). Moreover, we will assume 

that, for all  , it is always the case that                                  

           

Medina (2007) studies this game when    , i.e., he focuses on a large game of 

collective action. We briefly summarize his results when all players have identical payoff 

functions. Any correlated equilibrium of a large game of collective action can be 

represented by an aggregate share   . Define   
                 

                                   
. If 

   , then there exists a unique equilibrium where nobody cooperates (    ). 

However, if      , the large game of collective action has three correlated 

equilibria: One equilibrium in which all players cooperate       , another in which 

nobody cooperates        and a third one in which there is an intermediate level of 

cooperation given by        . In order to deal with the multiplicity of equilibria, 

Medina (2007) extends the notion of stability sets originated by Harsanyi and Selten 

(1988). He uses a methodology known as the “tracing procedure” to assign a set of initial 

belief conditions to each equilibrium. These conditions can be represented as a share of 

expected cooperators   . Then, the stability set of an equilibrium is defined as the set 

   assigned to it. The key result states that      belongs to the stability set of 

    , while      belongs to the stability set of     . As Medina (2007) 
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emphasizes, the threshold value of    that separates the stability set of      from 

the set of      is associated with the mixed-strategy equilibrium implicitly given by 

       . In order to see this more clearly, assume that       . Then, the stability 

set of      is the set of all shares of expected cooperators lower than the 

mixed-strategy equilibrium share of cooperators     , while the stability set of 

     is the set of all shares of expected cooperators higher than the mixed-strategy 

equilibrium share of cooperators     . 

Finally, Medina (2007) shows how to use stability sets to compute the probability of 

cooperation. In order to do so, assume that the initial belief conditions    are 

distributed with the CDF H. Then: 

              (    )       (    )          

This expression is very useful for deducing comparative static results. In particular, note 

that, as   increases, the probability of cooperation decreases. 

Olson’s Model (single Nash equilibrium for large N): The standard Olson’s public 

good model of collective action is a special case of the above model when the payoffs are 

given by: 

                                                   (1) 

where   0. For this model,    . Hence, when    , the unique equilibrium is 

    . More intuitively, in a large group (   ) there is a free rider problem (it is a 

dominant strategy for every player to defect) that impedes the members of the group 

from furthering their common interests. 

Schelling’s model (multiple Nash equilibria for large N): Consider a simple 

modification of Olson’s model: 

                                                     (2) 

where      . For this model   
 

 
  . Hence, when    , there are three 

Nash equilibria     ,     , and    such that       
 

 
. The stability set of 

     is            , while the stability set of      is            . More 
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intuitively, introducing an extra payoff     that is obtained only by those who 

cooperate when the collective action is successful transforms Olson’s game into a 

coordination game with multiple equilibria. If everybody defect, the best strategy is to 

defect, but if everybody cooperates, the best strategy is to cooperate. Moreover, there is 

a threshold for the share of expected cooperators (  
 

 
) such that players cooperate if 

and only if they expect there to be more cooperators than this threshold value. Finally, if 

the expected share of cooperators    is distributed with the cumulative distribution 

function H, we have: 

   (    )     ( 
 

 
 )  

Hence, as   decreases and/or   increases, the probability of cooperation increases. In 

Schelling’s model, according to the stability-sets method, as   decreases and/or   

increases, it is more likely that players will coordinate in the efficient equilibrium. 

 

2.2. Laboratory adaptation. In order to test the predictions derived by Medina (2007) 

using a laboratory experiment, we need to make some adjustments to the model 

presented in the previous section. The most important change is that we must consider 

the case when N is finite. This implies that we need to compute a threshold for the 

number of players such that the game with finite N has the same set of equilibria as the 

large game. To do so, we focus on simple cases. In particular, we will assume        

when studying the Olson and Schelling models. 

We begin by defining a Nash equilibrium for the game of collective action when N is 

finite. Let      {  ∑      } and        {    ∑        }.      is the set of 

pure strategy profiles in which   players cooperate, while        is the set of pure 

strategy profiles of all players except i in which k players cooperate. Given a strategy 

profile           , we can compute the probability that   players cooperate given 

that player i does not cooperate. This is given by        ∑ ∏  
 

                    

   
    .  

Therefore, the payoff for player i associated with the strategy profile            is 

given by: 
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             ∑ [(                 ) (

   

 
)

   

   

         ]        

         ∑ [(                 ) (
 

 
)          ]

   

   

        

 

 

Definition 1. A Nash equilibrium for the collective action game with finite N is a strategy 

profile α such that, for each I, one of the following conditions holds: 

                               

                              

                                  

 

 

The following proposition characterizes the set of Nash equilibria for the Olson and 

Schelling collective action games when N is finite and       . 

 

Proposition 1. Suppose that N is finite and       . Then: 

1. Olson’s model: Assume that    is given by (1). Then, if   
 

 
, the unique Nash 

equilibrium is    for all i, while, if   
 

 
, the unique Nash equilibrium is    for all i. 

2. Schelling’s model: Assume that    is given by (2). Then, if   
   

 
, then    for all i 

is the unique Nash equilibrium, while, if   
   

 
, there are three Nash equilibria:     for 

all i,     for all i, and     ̂  
      

      
  for all i. Moreover, in the third Nash equilibrium, 

the expected share of cooperators is  *
 

 
+   ̂. 

Proof: See Online Appendix 1. ■ 

 

Summing up, when   
 

 
, the unique Nash equilibrium for Olson’s model with finite N 

is     for all i, which coincides with the equilibrium for Olson’s model when N→∞. 
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Similarly, when   
   

 
, the set of Nash equilibria for Schelling’s model with finite N is 

   for all i,    for all i, and     ̂  
      

      
 for all i, which is analogous to the set of 

Nash equilibria for Schelling’s model when    . Note, in particular, that 

       ̂  
 

 
, which is the share of cooperators in the mixed strategy equilibrium in the 

large game. 

Suppose that, as in the large collective action game, we use the mixed strategy 

equilibrium for Schelling’s model with finite N to compute the probability of occurrence 

of the two pure strategy equilibria. In particular, assume that the share of expected 

cooperators    is distributed according to the cumulative distribution function  . 

Then: 

                         ̂   

Changes in  ̂. The probability of cooperation increases with B and s and decreases with 

c. Formally: 

 
                   

  
      ̂ 

  ̂

  
   

  
                   

  
      ̂ 

  ̂

  
   

 
                   

  
      ̂ 

  ̂

  
   

 

 

because 
  ̂

  
  , 

  ̂

  
  , and 

  ̂

  
  . For example, if H is the uniform distribution, then  

we have                    
         

       
 and, hence, 

                   

  
 

 

      
   

                   

  
 

         

[      ] 
   and 

                   

  
 

  

      
  . Intuitively, as B and/or s 

increases or c decreases, the threshold for the share of expected cooperators that makes 

players indifferent to the choice of cooperating or defecting decreases. Cooperation 

becomes more attractive and, hence, players require a lower share of expected 

cooperators in order to cooperate. Thus, given the distribution of the share of expected 

cooperators, the probability of cooperation increases. 
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Changes in   induced by changes in  ̂. Suppose that   is not independent of  ̂. 

In particular, assume that we have a family of distributions indexed by  ̂. We write 

 (    ̂) to indicate the probability that the expected share of cooperators is less than 

or equal to    when     ̂  
      

      
  for all   is the mixed strategy Nash 

equilibrium of the collective action game. Furthermore, assume that  (    ̂
 )  

 (    ̂)  for all    whenever  ̂   ̂ , i.e.,      ̂   first-order stochastically 

dominates      ̂  when  ̂  is lower than  ̂. Then, we have: 

 
                   

  
  [     ̂  ̂       ̂  ̂ ]

  ̂

  
   

 
                   

  
  [     ̂  ̂       ̂  ̂ ]

  ̂

  
   

                   

  
  [     ̂  ̂       ̂   ̂  ]

  ̂

  
   

 

 

   (  ) is the partial derivative with respect to the first (second) argument,      , 

because      ̂   first-order stochastically dominates      ̂  whenever  ̂   ̂ , 

  ̂

  
  , 

  ̂

  
  , and 

  ̂

  
  . Note that if      ̂   first-order stochastically dominates 

     ̂  whenever  ̂   ̂ , then the dependence of   on  ̂  magnifies all the 

comparative statics derivatives without affecting their signs. Intuitively, as B and/or s 

increases or c decreases, the probability of cooperation increases for two reasons. First, 

the threshold for the share of expected cooperators that makes players indifferent to the 

choice of cooperating or defecting decreases. Second, initial beliefs about the expected 

share of cooperators are updated in the sense that the new distribution gives at least as 

high a probability of an initial belief being at least    as the prior distribution does. 

 

3. The Laboratory Experiment 

In this section we describe our laboratory experiment. First, we provide a general 

description of the experiment, including its monetary payoffs, number of sessions and 

rounds, matching procedure and the instructions received by the subjects. Second, we 

give a detailed description of the game that the subjects played. Finally, we summarize 

the treatments and compute the corresponding theoretically predicted outcomes. 
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3.1. General description of the experiment. The experiment was conducted in May - 

October 2014 at the Universidad de San Andrés and the Universidad Nacional de La 

Plata, both of which are located in the Province of Buenos Aires, Argentina. We recruited 

undergraduate and graduate students from any field of study and regardless of how 

familiar they were with game theory and economic theory. We conducted 16 sessions 

with 20 subjects each, totaling 320 participants. Subjects were allowed to participate in 

only one session. Every session included four treatments, which made it possible to 

avoid any treatment selection problem. In each treatment, subjects were asked to play a 

collective action game. The experiment was programmed and conducted using z-Tree 

software (Fischbacher, 2007). Each session lasted approximately 50 minutes. The 

experiment proceeded as follows: 

Allocation to computer terminals. Before each session began, subjects were randomly 

assigned to computer terminals. 

Instructions. After subjects were at their terminals, they received the instructions, 

which were also explained by the organizers. Subjects then had time to read the 

instructions on their own and ask questions. Online Appendix 2.1 contains an English 

translation (from Spanish) of the script that we employed to provide instructions while 

Online Appendix 2.2 contains the printed version of the instructions. This was the last 

opportunity that subjects had to ask questions. 

Prior beliefs. At the beginning of randomly selected sessions, subjects were asked to 

report their assessments of how the game would unfold.14 In particular, for each 

treatment, we asked each subject how many subjects from a group of 10 they thought 

would contribute their point. This allowed us to obtain an empirical distribution of 

individuals’ prior beliefs regarding the expected share of cooperators for each 

treatment. The questions we asked can be found in Online Appendix 2.3. 

Quiz. In order to check whether participants understood the rules of the game, we asked 

them to take a five-question quiz. The quiz was administered after we had given the 

instructions, but before the rounds began. Subjects were paid approximately US$ 0.25 

per correct answer, but we never informed them which ones they had answered 

correctly. The quiz questions can be found in Online Appendix 2.4. 

                                                      
14 For each session, all participants were asked to report their prior beliefs with probability 1/2. Thus, on 
average, subjects reported their prior beliefs in half of the sessions.  
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Rounds. After the subjects had finished the quiz, they began playing rounds, during 

which they interacted solely through a computer network using z-Tree software. 

Subjects played 16 rounds of the collective action game. The first 4 rounds were for 

practice, and the last 12 rounds were for pay. At the end of each round, subjects received 

a summary of the decisions taken by both themselves and their partners, including 

payoffs per round, their own accumulated payoffs for paid rounds and nature’s decision. 

Online Appendix 2.5 provides some samples of the screens that the subjects saw. 

Matching. In odd-numbered rounds, 10 players were randomly matched and played 

treatment 1 (  ), while the other 10 players played treatment 3 (  ). In even-numbered 

rounds, 10 players were randomly matched and played treatment 2 (  ), while the other 

10 players played treatment 1 (  ). See below for a detailed explanation of the 

treatments. 

Questionnaire. Finally, just before leaving the laboratory, all the subjects were asked to 

complete a questionnaire which was designed to enable us to test the balance across 

experimental groups and to control for their characteristics in the econometric analysis. 

This questionnaire is presented in Online Appendix 2.6. 

Payments. All subjects were paid privately, in cash. After the experiment was 

completed, a password appeared on each subject’s screen. The subjects then had to 

present this password to the person who was running the experiment in order to receive 

their payoffs. Subjects earned, on average, US$ 11.80, which included a US$ 2 show-up 

fee, US$ 0.25 per correct answer on the quiz and US$ 0.25 for each point they received 

during the paid rounds of the experiment. All payments were made in Argentine 

currency; at the time, US$ 1 was equivalent to AR$ 8.15 

 

3.2. Treatments and predicted outcomes. Once they had finished the quiz, subjects 

directed their attention to their computers and proceeded to play the first round of the 

session. In each round, subjects were randomly assigned to one of two groups, each 

consisting of 10 participants. At the beginning of the round they received one point and 

then decided whether to keep it for themselves or to invest it in a common fund. The 

                                                      
15 Since Argentina’s rate of inflation was very high, we adjusted the conversion rate in order to maintain 
the purchasing power of the payments. Thus, from May to July, the conversion rate was 2 pesos per point, 
while, from August to October, it was 2.4 pesos per point. 



19 

probability that the investment in the common fund would be successful equals the 

share of subjects who contribute their point out of the group of 10. If the investment was 

successful, all players obtained   points and those who contributed obtained   extra 

points. 

The experiment consisted of four different treatments. The first treatment represents a 

scenario of no cooperation opportunities (       and    ); in other words, this is 

the free-rider Olsonian model with one Nash equilibrium, in which nobody contributes. 

In treatments 2 to 4, we gradually increased   and/or  , inducing multiple equilibria. 

Specifically, the second treatment represents a scenario of low cooperation 

opportunities (       and       ); the third treatment is associated with a 

scenario of high (but not full) cooperation opportunities (    and       ); and 

the fourth, a scenario where the incentives to cooperate are the highest (    and 

      ). 

Table 1 summarizes the relevant parameters for each treatment and indicates the 

predicted share of contributors and the predicted profit if there are 10 players in each 

group and assuming that prior beliefs are uniformly distributed in the interval [    ]  

Table 1: Treatments and Predicted Share of Cooperators with a Uniform Prior Belief 

Distribution 

Treatment N B C s 

Predicted share  
of cooperators  

(Priors uniformly 
distributed) 

                   

Predicted payoff (Priors 
uniformly distributed) 

 
(1) (2) (3) (4) (5) (6) 

   10 1.25 1 0.00       1.000 

   10 1.25 1 1.25           0 

   10 3.00 1 1.25     0       

   10 3.00 1 1.75             

 

4. Understanding of the Game and Randomization Balance 

In this section we show that subjects understood the game and that the randomization 

was balanced. Table 2 shows that, on average, subjects understood the rules of the game. 

Indeed, 81% of them answered question 1 correctly, 95% answered question 2 

correctly, 78% answered question 3 correctly and 89% answered question 4 correctly. It 
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seems that subjects found question 5 to be more difficult, since only 70% of them 

answered it correctly. 

Table 3 shows the randomization balance across treatments. Note that the same group 

of 20 subjects was randomly matched to play    or    in odd-numbered rounds and 

   or    in even-numbered rounds. This enabled us to determine whether subjects 

with given characteristics were more frequently allocated to one treatment over 

another. In the comparisons among the four treatments, all characteristics and levels of 

understanding of the game were perfectly balanced between    and    and between 

   and   . In some cases, there were slight imbalances in terms of 

undergraduate/graduate students and nationality, mostly at a 5% significance level. 

Nevertheless, we had to reject the null hypothesis at the 10% and 5% levels of statistical 

significance in less than 10% of the tests. Moreover, the imbalances in nationality and 

undergraduate/graduate students were due to the fact that there were very few 

foreigners (95% of the subjects were Argentines) and very few graduates in the sample 

(94% of the subjects were undergraduates). 

Table 2: Balance across Treatments (I) 

  All subjects T1 T2 T3 T4 

  

Number 
of 

subjects Mean S.d. Mean S.d. Mean S.d. Mean S.d. Mean S.d. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Subject characteristics                       

Age 320 21.76 3.34 21.62 3.27 21.78 3.36 21.91 3.41 21.74 3.32 

Nationality (Argentine=1) 320 0.95 0.21 0.95 0.22 0.96 0.19 0.96 0.20 0.94 0.23 

Studied game theory (=1) 320 0.47 0.50 0.45 0.50 0.47 0.50 0.50 0.50 0.48 0.50 

Gender (male=1) 320 0.51 0.50 0.51 0.50 0.51 0.50 0.51 0.50 0.51 0.50 

Graduate studies (=1) 320 0.06 0.23 0.05 0.21 0.07 0.25 0.07 0.25 0.04 0.20 

Spanish language (=1) 320 0.97 0.16 0.97 0.16 0.98 0.14 0.98 0.15 0.97 0.17 

                        
  
                       
Understanding the experiment                     

Answered correctly: question 1 320 0.81 0.39 0.82 0.39 0.82 0.39 0.80 0.40 0.80 0.40 

Answered correctly: question 2 320 0.95 0.22 0.95 0.22 0.95 0.22 0.95 0.22 0.95 0.22 

Answered correctly: question 3 320 0.78 0.42 0.77 0.42 0.77 0.42 0.78 0.41 0.78 0.41 

Answered correctly: question 4 320 0.89 0.31 0.89 0.31 0.88 0.32 0.89 0.31 0.90 0.30 

Answered correctly: question 5 320 0.70 0.46 0.71 0.46 0.71 0.46 0.69 0.46 0.70 0.46 

Note: The mean is the sample mean and S.d. is the standard deviation for the corresponding variable in each line. Entries in columns 

(1)-(3) indicate the values for the complete sample; those in columns (4)-(5) represent the subjects who played treatment 1; columns 

(6)-(7) show those who played treatment 2; columns (8)-(9) show those who played treatment 3; and those who played treatment 4 
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are recorded in columns (10)-(11).  

 

Table 3: Balance across Treatments (II)  

                                        

     (1)  (2)  (3)  (4)  (5)  (6) 

Characteristics of subjects               

Age   -0.164 -0.287* -0.123 -0.123 0.041 0.164 

Nationality (Argentine=1)   -0.017* -0.012 0.004 0.005 0.021** 0.016* 

Studied game theory (=1)   -0.021 -0.054** -0.033 -0.033 -0.012 0.021 

Gender (male=1)   0.004 0.003 -0.001 -0.001 -0.005 -0.004 

Graduate studies (=1)   -0.023** -0.021** 0.002 0.002 0.025** 0.023** 

Spanish language (=1)   -0.007 -0.006 0.001 0.001 0.008 0.007 
                

Understanding of the experiment      

Answered correctly: question 1   0.001 0.017 0.016 0.016 0.015 -0.001 

Answered correctly: question 2   0.002 0.002 0.000 0.000 -0.002 -0.002 

Answered correctly: question 3   -0.002 -0.014 -0.012 -0.012 -0.010 0.002 

Answered correctly: question 4   0.008 0.002 -0.005 -0.006 -0.013 -0.007 

Answered correctly: question 5   0.002 0.014 0.012 0.012 0.010 -0.002 

Note: Each entry indicates the mean difference between the two treatments in the column for the corresponding variable 

in each line. * indicates that the difference of means test is significant at 10%; ** significant at 5%; *** significant at 1%. 

 

5. Descriptive Analysis 

In this section we first present descriptive statistics for the decisions taken by the 

subjects (share of cooperators and payoffs by treatment). Then, we study the 

distribution of the subjects’ prior beliefs regarding the share of expected cooperators. 

Finally, we show that the average share of cooperators and average payoffs do not differ 

between the sessions at which subjects were asked to report their prior beliefs and 

those in which they were not asked to do so.  

 

5.1. Cooperation decision. Table 4 provides descriptive statistics on the share of 

cooperators for all subjects (first panel), the subset of subjects who were asked to report 

their prior beliefs (second panel) and the subset of subjects who were not asked to 

report their prior beliefs (third panel). For each treatment, Table 4 indicates the total 

number of observations, sample means and standard deviations for the share of 

cooperators, computed as the proportion of players out of the 10 participants who 
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decided to invest their point in each round, treatment and session. In order to facilitate 

comparisons with theoretical predictions, we also report the model prediction for the 

share of cooperators, assuming that the expected share of cooperators is uniformly 

distributed and assuming the model prediction for the share of cooperators when the 

empirical distribution of the expected share of cooperators is employed. As predicted by 

the model, the average share of cooperators increases from    to      for        . 

However, for all treatments, it exceeds the share predicted by the model either when 

prior beliefs are assumed to be uniformly distributed or when the empirical distribution 

of prior beliefs is employed. Note, however, that in the former case, the gap between the 

observed average share of cooperators and theoretical predictions significantly 

decreases for   ,   , and    (by definition, the distribution of prior beliefs does not 

affect theoretical predictions for   ). 

Table 4: Share of Cooperators (Descriptive Statistics) 

  

Number of 
observations 

Model 
prediction 

(Prior beliefs 
uniformly 

distributed) 

Model 
prediction 

(Prior beliefs 
empirically 
distributed) 

Mean S.d. 

All subjects           

   96 0.000 0.000 0.072 0.085 

   96 0.333 0.340 0.590 0.238 

   96 0.490 0.599 0.811 0.181 

   96 0.667 0.910 0.927 0.103 

Subjects who  
reported priors       

   48 0.000 0.000 0.058 0.084 

   48 0.333 0.340 0.604 0.273 

   48 0.490 0.599 0.806 0.184 

   48 0.667 0.910 0.925 0.101 

Subjects who did  
not report priors 

  
    

   48 0.000 0.000 0.085 0.084 

   48 0.333 0.340 0.575 0.197 

   48 0.490 0.599 0.817 0.179 

   48 0.667 0.910 0.929 0.104 

Note: For each treatment, there are 6 observations per session of the share of cooperators. Because we 
conducted 16 sessions, the total number of observations per treatment is 96. 

 

5.2. Payoffs. Table 5 shows the sample mean and standard deviation of payoffs per 

treatment. As predicted by the model, the payoff is, on average, higher in      than in 
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   for         (4.327 points in    , 3.294 points in   , 1.710 points in    and 1.019 

points in   ), but in all treatments the average payoff exceeds the one predicted by the 

model when prior beliefs are assumed to be uniformly distributed. Specifically, all 

players earned, on average, 1.9% more than what the model predicted in   , 14% more 

in   , 25.5% more in    and 23.6% more in   . The average payoff is very close to 

theoretical predictions when the empirical distribution of prior beliefs is employed. 

Specifically, all players earned, on average, 1.9% more than what the model predicted in 

  , 13.3% more in   , 11.7% more in    and 2% less than predicted by the model 

in   . 

 

Table 5: Payoffs (Descriptive Statistics)  

 
Number of 

observations 

Model 
prediction 

(Prior beliefs 
uniformly 

distributed) 

Model 
prediction 

(Prior beliefs 
empirically 
distributed) 

Mean S.d. 

All subjects 
     

   960 1.000 1.000 1.019 0.396 

   960 1.500 1.509 1.710 0.966 

   960 2.625 2.948 3.294 1.663 

   960 3.500 4.414 4.327 1.266 

Subjects who 
reported priors    

   480 1.000 1.000 1.046 0.401 

   480 1.500 1.509 1.888 0.879 

   480 2.625 2.948 3.342 1.625 

   480 3.500 4.414 4.426 1.095 

Subjects who did 
not report priors    

   480 1.000 1.000 0.993 0.390 

   480 1.500 1.509 1.532 1.017 

   480 2.625 2.948 3.246 1.701 

   480 3.500 4.414 4.228 1.410 

Note: For the payoffs in each treatment, there are 60 observations per session. Because we conducted 
16 sessions, the total number of observations per treatment is 960.  
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5.3. Prior beliefs. For each treatment, Table 6 gives descriptive statistics for the 

subjects’ prior beliefs regarding the expected share of cooperators.16 Note that prior 

beliefs differ across treatments.17 In particular, the expected share of cooperators is 

higher in      than in    for        .  

Table 6: Prior Belief (Descriptive Statistics) 

 
Mean Median S.d. Min Max 

Prior beliefs for    1.325 0 2.423 0 10 

Prior beliefs for    5.713 5 3.000 0 10 

Prior beliefs for    6.056 7 3.200 0 10 

Prior beliefs for    7.863 9 2.517 0 10 

 

Figure 1 shows the cumulative distribution function of prior beliefs regarding the 

expected share of cooperators across treatments. The horizontal axis measures how 

many participants out of a group of 10 subjects believed would contribute their point in 

each treatment. Let    denote the cumulative distribution function of prior beliefs for 

treatment          . Note that    first order stochastically dominates    and    

and that    and     first-order stochastically dominate   . 

 

Figure 1: Cumulative Distribution Function of Prior Beliefs 

                                                      

16 The reader will recall that, in randomly selected sessions, subjects were asked to estimate the expected 
number of cooperators before they started playing. 

17 In line with this finding, Palfrey and Rosenthal (1991) show that subjects’ prior beliefs of the 
probability that a subject contributes is biased up with respect to an unbiased Bayes-Nash equilibrium. In 
the same vein, Orbell and Dawes (1991) argue that cooperators expect significantly more cooperation 
than do defectors. 
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In order to formally compare the distribution functions of prior beliefs, we conduct the 

nonparametric Wilcoxon matched-pair sing-rank test. The null hypothesis of this test is 

that the distribution of the prior belief for    (denoted as     is equal to the 

distribution of the prior belief for    (denoted as     and the alternative hypothesis 

is that    is shifted to the left of   . Table 7 shows the results of this test. Note that in 

all cases except    vs   , the null hypothesis of equal distributions can be rejected at 

0.17% of significance.18 Therefore, there is evidence that the distribution of prior 

beliefs for    is shifted to the left of   ,      , while the distribution of prior beliefs 

for    is shifted to the left of    and the distribution of prior beliefs for    is shifted 

to the left of   . 

Table 7: Comparison of Distribution of Priors Beliefs 

 

Statistic         

    
     385.0 0.000 

    
     239.5 0.000 

    
     173.5 0.000 

    
     3247.0 0.098 

                                                      
18 We use the Bonferroni correction to counteract the problem of   multiple simultaneous comparisons. 
The Bonferroni correction tests each individual hypothesis at a significance level of    . Therefore, if we 
test six hypotheses with an intended         , then the Bonferroni correction would test each individual 
hypothesis with                    . 
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     1447.5 0.000 

    
     648.0 0.000 

 

5.4. Reporting prior beliefs. The first panel (second panel) in Table 8 shows the results 

of the difference in means test of the share of cooperators (payoffs) between the sample 

composed by participants who reported their prior beliefs and those who did not report 

them. Standard errors are clustered by session. Note that it is not possible to reject the 

null hypothesis of equal means for the share of cooperators (payoff) in all treatments.  

Table 8: Difference in Means Test (Share of Cooperators and Payoffs) 

                        

Share of cooperators 

All subjects -0.06 0.950 

   -1.08 0.299 

   0.29 0.778 

   -0.13 0.896 

   -0.1 0.921 

Payoff 

All subjects 0.80 0.436 

   1.19 0.251 

   1.48 0.159 

   0.20 0.848 

   0.53 0.604 

Summing up, the descriptive analysis shows that: (i) The average share of cooperators 

increases from    to      for        ; (ii) The average share of cooperators in all 

treatments exceeds the share predicted by the model, but the gap is smaller once we 

compute theoretical predictions using reported prior beliefs rather than the uniform 

distribution; (iii) Payoffs are, on average, higher in      than in    for        ; (iv) 

Average payoffs exceed model predictions when prior beliefs are assumed to be 

uniformly distributed, but they are closer to theoretical predictions when the empirical 

distribution of prior beliefs is employed; (v) Prior beliefs differ across treatments. The 

average expected share of cooperators is higher in      than in    for        .    

first-order stochastically dominates    and      and    and     first-order 

stochastically dominate   ; (vi) The average share of cooperators and the average 

payoffs are not statistically different for the sessions in which subjects were asked to 
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report their prior beliefs than they are for the sessions in which they were not asked to 

do so. 

 

6. Results 

In this section we formally test the main comparative static results using regression 

analysis. Note that in the context of perfect experimental data, where no controls are 

needed for identification of the causal effects of interest, the analysis is completely 

nonparametric, as all that it entails is a comparison of the mean outcome differences 

across treatment groups, and the inference can also be made nonparametric. In all cases, 

robust and clustered standard errors are computed by session.  

 

6.1. Cooperation decision. In order to formally test the hypothesis that the probability 

of a successful collective action increases with   and    we use the following 

regression model: 

                      ∑     

  

   

      

where   indexes subjects,              indexes experimental rounds, and 

             indexes experimental sessions.         is the dependent variable and 

indicates whether player   decided to invest his/her point in each session, round and 

treatment (          if s/he contributes and           if s/he does not). The 

explanatory variable of interest is   , a dummy variable indicating treatment status (   

for        ). In some specifications, we also include control variables. We control for 

individual characteristics      (gender, age, nationality, university, whether or not the 

subjects have ever taken a course in game theory, whether the subjects are 

undergraduate or graduate students and the subjects’ level of understanding of the game 

as measured by their answers to the quiz questions) and for fixed effects by session 

(   ). According to our theoretical predictions, we should expect  ̂  to be positive 

when comparing      with    for        . 

Columns (1), (3) and (5) in Table 9 summarize the results of regressing         in each 

of the treatments separately without controls for all the subjects in the sample, those 
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subjects who reported their beliefs and those who did not report them, respectively. 

Robust standard errors are reported in parentheses and standard errors clustered by 

session are shown in square brackets. In keeping with the model’s prediction, the 

probability of cooperators in each treatment is significantly different (at a confidence 

level of 99% in most cases), and the coefficient associated with each treatment is 

positive in all cases. Indeed, note that when we compare the probability of cooperation 

in    vs.   , the associated coefficient is the highest.19 Thus, as predicted by the 

model, a higher value of   and/or   leads to a larger share of cooperators and, hence, 

to a higher probability of cooperation. Columns (2), (4) and (6) in Table 9 report the 

results once the entire set of controls is included. As the table shows, the results do not 

change in any meaningful way. 

Table 9: Cooperation Decision (Regression Analysis) 
 

  
All subjects 

Subjects who reported 
prior beliefs 

Subjects who did not 
report prior 

beliefs 

  (1) (2) (3) (4) (5) (6) 

     vs      
 

      

 ̂  0.518*** 0.518*** 0.546*** 0.548*** 0.490*** 0.489*** 

 
(0.018) (0.018) (0.025) (0.024) (0.026) (0.026) 

 
[0.044] [0.044] [0.080] [0.079] [0.040] [0.042] 

R-squared 0.303 0.315 0.336 0.362 0.271 0.287 

     vs                  

 ̂  
 

0.740*** 0.742*** 0.748*** 0.743*** 0.731*** 0.736*** 

 
(0.015) (0.015) (0.021) (0.021) (0.022) (0.021) 

 
[0.039] [0.039] [0.053] [0.052] [0.061] [0.063] 

R-squared 0.555 0.562 0.570 0.596 0.540 0.557 
 

     vs      
            

 ̂  
 

0.855*** 0.855*** 0.867*** 0.864*** 0.844*** 0.846*** 

 
(0.012) (0.012) (0.016) (0.016) (0.017) (0.017) 

 
[0.025] [0.025] [0.037] [0.037] [0.037] [0.037] 

R-squared 0.731 0.734 0.751 0.762 0.712 0.715 

     vs      
 

            

 ̂  0.222*** 0.221*** 0.202** 0.197** 0.242*** 0.243*** 

 
(0.020) (0.020) (0.029) (0.028) (0.029) (0.028) 

 
[0.045] [0.046] [0.065] [0.064] [0.065] [0.066] 

R-squared 0.059 0.076 0.049 0.115 0.069 0.099 

                                                      

19 The reader will recall that    represents a scenario of no cooperation opportunities (       and 
   ); in other words, this is the free-rider Olsonian model with one Nash equilibrium in which nobody 
contributes.    represents a scenario where the incentives to cooperate are the highest (    and 
      ). 
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     vs      
 

            

 ̂  0.338*** 0.336*** 0.321*** 0.321*** 0.354*** 0.351*** 

 
(0.018) (0.018) (0.025) (0.025) (0.025) (0.025) 

 
[0.050] [0.050] [0.087] [0.084] [0.054] [0.053] 

R-squared 0.155 0.168 0.143 0.193 0.168 0.181 

     vs      
 

            

 ̂  0.116*** 0.115*** 0.119** 0.124** 0.112** 0.111** 

 
(0.015) (0.015) (0.022) (0.021) (0.021) (0.021) 

 
[0.025] [0.025] [0.034] [0.037] [0.037] [0.036] 

R-squared 0.029 0.043 0.030 0.108 0.029 0.093 

Controls No Yes No Yes No Yes 

Number of observations 1920 1920 960 960 960 960 

Note: * significant at 10%; ** significant at 5%; *** significant at 1% (using standard errors clustered by 
session). Robust standard errors are shown in parentheses and standard errors clustered by session are 
shown in square brackets. Controls: (i) Individual characteristics     : gender, age, nationality, university, 

whether the subjects have ever taken a course in game theory and whether they are undergraduate or 
graduate students; (ii) Level of understanding of the game measured by the subjects’ correct answers to the 
quiz questions; and (iii) Fixed effects by session    . 

 

6.2. Payoffs. In order to formally test the hypothesis that the average payoff of a player 

increases with   and/or    we use the following regression model: 

                        ∑     

  

   

      

The dependent variable           is the payoff denominated in points obtained by 

subject   in round   and session  . The regressors are the same as in the model for 

the share of cooperators. The explanatory variable of interest is   , a dummy variable 

indicating treatment status (   for        ). According to our theoretical predictions, 

we should expect  ̂  to be positive when comparing      with    for        . 

Table 10 summarizes the results. The corresponding clustered standard errors are 

shown in square brackets. As predicted by our model, the payoff in each treatment is 

significantly different, and the coefficient associated with each treatment is positive. 

Hence, operating under the parameters in      rather than in    for         

induces a positive and statistically significant effect on the payoff. 

Table 10: Payoffs (Regression Analysis) 

 
All subjects 

Subjects who 
reported prior 

beliefs 

Subjects who did not 
report 

prior beliefs 

   (1)  (2)   (3)         (4) (5) (6) 

     vs      
 

            

 ̂  0.691*** 0.691*** 0.842*** 0.847*** 0.539** 0.539** 
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(0.034) (0.033) (0.044) (0.044) (0.050) (0.049) 

 
[0.120] [0.120] [0.155] [0.153] [0.177] [0.176] 

R-squared 0.180 0.206 0.276 0.297 0.109 0.163 

     vs      
 

            

 ̂  2.275*** 2.267*** 2.296*** 2.282*** 2.253*** 2.245*** 

 
(0.055) (0.055) (0.076) (0.074) (0.080) (0.080) 

 
[0.251] [0.255] [0.419] [0.422] [0.306] [0.315] 

R-squared 0.470 0.482 0.485 0.534 0.455 0.475 

     vs                  

 ̂  
 

3.308*** 3.307*** 3.380*** 3.379*** 3.235*** 3.238*** 

 
(0.043) (0.042) (0.053) (0.051) (0.067) (0.065) 

 
[0.187] [0.187] [0.303] [0.304] [0.237] [0.236] 

R-squared 0.757 0.771 0.808 0.826 0.710 0.727 

     vs                  

 ̂  
 

1.584*** 1.581*** 1.454*** 1.445*** 1.714*** 1.713*** 

 
(0.062) (0.061) (0.084) (0.080) (0.090) (0.091) 

 
[0.240] [0.241] [0.345] [0.348] [0.352] [0.351] 

R-squared 0.253 0.284 0.237 0.333 0.273 0.286 

     vs                  

 ̂  2.617*** 2.616*** 2.538*** 2.542*** 2.696*** 2.706*** 

 
(0.051) (0.050) (0.064) (0.060) (0.079) (0.080) 

 
[0.204] [0.204] [0.271] [0.264] [0.322] [0.323] 

R-squared 0.575 0.607 0.621 0.674 0.546 0.557 
     vs                  

 ̂  
 

1.033*** 1.036*** 1.084*** 1.099*** 0.982** 0.979** 

 
(0.067) (0.066) (0.089) (0.081) (0.101) (0.099) 

 
[0.203] [0.207] [0.257] [0.257] [0.331] [0.332] 

R-squared 0.109 0.174 0.133 0.307 0.090 0.147 

Controls No Yes No Yes No Yes 

Number of Observations 1920 1920 960 960 960 960 

Note: * significant at 10%; ** significant at 5%; *** significant at 1% (using standard errors clustered by session). 

Robust standard errors are shown in parentheses and standard errors clustered by sessions are shown in square 

brackets. Controls: see the note for Table 9.  

As a robustness check, we repeated the estimations in Tables 9 and 10 while introducing 

two new explanatory variables, namely    and  .    is a dummy variable that 

indicates whether the collective action in the previous round was successful or not, and 

  is the number of players in the same group who decided to invest in the previous 

round. These variables capture the possibility that subjects decide to cooperate in a 

treatment just because either the collective action was successful in the previous round 

or the number of investors was relatively high. The results do not change in any 

meaningful way. The coefficients associated with each treatment are still significantly 

different and positive.  
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6.3. Prior beliefs. In order to determine if asking subjects to reveal their prior beliefs 

biased their decisions during the game, we performed a test of equality of the regression 

coefficients. Panel 1 of Table 11 summarizes the results of a test whose null hypothesis is 

that the effects of each treatment on the share of cooperators are the same for the 

subjects who reported their prior beliefs (  ) and those who did not report them (  
 ). 

Standard errors are clustered by sessions. In all cases the null hypothesis of equal 

coefficients cannot be rejected. Analogously, Panel 2 of Table 11 summarizes the results 

of a test whose null hypothesis is that the effects of each treatment on the payoffs are 

identical for subjects who reported their prior beliefs (  ) and subjects who did not 

report them (  
 ). Standard errors are clustered by sessions. In all cases the null 

hypothesis of equal coefficients cannot be rejected20. Thus, it is possible to confirm that 

asking subjects to reveal their prior beliefs before the game started did not introduce 

any bias in their decisions during the game.  

Table 11: Reporting Versus Not Reporting Prior Beliefs  

(Difference in Average Treatment Effects)  

               

Share of cooperators (        
 ) 

     vs       1.99 0.201 

     vs       0.08 0.791 

     vs       0.39 0.551 

     vs       0.36 0.568 

     vs       0.38 0.558 

     vs       0.03 0.871 
 
 
 
 
 
 
Profit (        

 ) 

     vs      2.92 0.131 

     vs      0.02 0.892 

     vs      0.37 0.56 

     vs      0.55 0.484 

     vs      0.24 0.639 

     vs      0.09 0.767 

Note:        indicates the   statistic with 1 degree of freedom in the 
numerator and 7 degrees of freedom in the denominator.      indicates 
the significance level of each test. 

                                                      
20 The results of the tests hold when we add controls in the regression of the share of cooperators (and 
payoffs) in each of the treatments. We do not report the corresponding   statistics for the sake of 
simplicity.  



32 

Summing up, the regression analysis produces robust support for the main theoretical 

comparative statics predictions. Increases in   and/or   have a significant positive 

effect on the share of cooperators and, hence, on the probability of a successful collective 

action, as well as on the players’ payoffs.21 The effects are statistically significant 

whether or not we include controls for individual characteristics, level of understanding 

of the game or fixed effects by session. Asking subjects to report their prior beliefs 

before the game started did not have any significant effect on their decisions. 

Introducing control variables for whether the collective action in the previous round was 

successful or not and for the number of players in the same group who decided to invest 

in the previous round does not change the results in any meaningful way either.  

 

7. Exploring a Decomposition of Changes in  ̂ 

In this section we decompose a change in  ̂ in a ‘belief effect’ and a ‘range of 

cooperation effect’. The idea is to learn about the mechanism that induce more 

cooperation when  ̂ decreases. 

Table 12 shows the average share of cooperators as well as the predicted share of 

cooperators for each treatment, both using a uniform distribution for all treatments, and 

the empirical distribution of prior beliefs for each treatment. 

 

 

 

Table 12: Model Prediction of the Share of Cooperators 

  

Empirical 
probability of 
cooperation 

Model prediction 
(Prior beliefs, 

uniformly 
distributed) 

Model prediction 
(Prior beliefs 
empirically, 

distributed for 
T1) 

Model prediction 
(Prior beliefs, 

empirically 
distributed for 

T2) 

Model prediction 
(Prior beliefs, 

empirically 
distributed for 

T3) 

Model prediction 
(Prior beliefs, 

empirically 
distributed for 

T4) 

   0.072 0.000 0.000 0.000 0.000 0.000 

   0.590 0.333 0.054 0.340 0.448 0.687 

   0.811 0.490 0.079 0.424 0.599 0.819 

   0.927 0.667 0.121 0.742 0.717 0.910 

                                                      

21 More cooperative prior beliefs with the same   and/or   (i.e., within a treatment) do not, however, 
induce more cooperation. 
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As discussed in section 5.3., the distribution of prior beliefs is not the same in every 

treatment. As the benefit of cooperation increases, subjects tend to raise their 

assessments of the share of cooperators. The effect of these changes in theoretical 

predictions can be observed in Table 12. Except for   , for which theoretical 

predictions do not change with the distribution of prior beliefs, the predicted share of 

cooperators increases for all of the rest of the treatments, as we employ the prior beliefs 

associated with a treatment with a lower  ̂.22 For example, for   , if we use the priors 

of     the predicted share of cooperators is 0.054, while it is 0.340 with the priors of 

  , 0.448 with the priors of    and 0.687 with the priors of   . This suggests that we 

can decompose a change in the predicted share of cooperators into two analytically 

different effects: a ”belief effect” that captures the change in prior beliefs, and a ”range of 

cooperation effect” that captures the change in the range of prior beliefs that induced 

greater cooperation. 

More technically, the distribution of the expected share of cooperators   is not 

independent of  ̂. Although this does not affect the sign of the comparative statics of the 

model, it is interesting to explore what fraction of the change in the predicted share of 

cooperators can be attributed to a change in prior beliefs and what fraction can be 

attributed to a change in the range of prior beliefs that induce greater cooperation. Thus, 

we are now interested in detecting the mechanism by which a decrease in  ̂ leads to a 

higher probability of a successful collective action. 

Let    denote the cumulative distribution function of the expected share of 

cooperators for treatment     and     the probability of a successful collective action 

in treatment   . Then: 

  (  )             ̂     ( ̂ )  [    ̂       ̂  ]  [    ̂     ( ̂ )] 

Define   (     )  
    ̂       ̂  

    ̂     ( ̂ )
.   (     )  as the proportion of the change 

attributed to a change in the distribution of expected cooperators. Naturally, 

    (     ) is the proportion of the change in the probability of a successful 

collective action due to a change in the range of prior beliefs that induce greater 
                                                      
22 The reader will recall from section 2.2 that a lower  ̂ is associated with a higher   and/or  ; in 

other words: 
  ̂

  
  , 

  ̂

  
  . 
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cooperation. Table 13 shows the decomposition of a change in the predicted share of 

cooperators into the belief and range of cooperation effects. 

Table 13: Decomposition of Changes in  ̂: I 

 
    ̂     ( ̂ )   (     )     (     ) 

      0.340 0.00 1.00 

      0.599 0.00 1.00 

      0.910 0.00 1.00 

      0.259 0.42 0.58 

      0.570 0.61 0.49 

      0.311 0.71 0.29 

 

To some extent, this decomposition is arbitrary, in the sense that we can first vary   

and then  ̂ or the other way around. Formally, we can also decompose   (  )  

       as follows: 

  (  )             ̂     ( ̂ )  [    ̂     ( ̂ )]  [  ( ̂ )    ( ̂ )] 

and define the proportion of the change attributed to a change in the distribution of 

expected cooperators by    (     )  
  ( ̂ )   ( ̂ )

    ̂     ( ̂ )
. Table 13 shows this 

decomposition. 

 

 

 

Table 14: Decomposition of Changes in  ̂: II 

 
    ̂     ( ̂ )    (     )      (     ) 

      0.340 0.159 0.841 

      0.599 0.132 0.868 

      0.910 0.133 0.867 

      0.259 0.324 0.676 

      0.570 0.705 0.295 

      0.311 0.379 0.621 

 

Except when we move from    to     both decompositions assign similar proportions 

to both effects. When the starting point is     both decompositions assign a very high 
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proportion of the change to the range of cooperation effect (at least 84%). When the 

starting point is    and we move to    (  ), the first and second decompositions 

attribute 42% and 32.4% (61% and 70%) of the change to a switch in beliefs, 

respectively.  

A potential concern about these decompositions is that they rely on the empirical 

distribution of prior beliefs that were reported by the subjects before the rounds began. 

It is possible that these prior beliefs evolve as the experiment proceeds and that subjects 

learn from previous rounds. However, we do not observe any temporal pattern in the 

data. For example, Figure 2 shows the mean share of cooperators per round across 

treatments for all the subjects in the sample (first panel), the subjects who reported 

their beliefs (second panel) and the subjects who were not required to report their 

beliefs (third panel). The mean share of cooperators fluctuates without forming any 

clear pattern.23  

 

 

Figure 2: Share of Cooperators 

All subjects 

                                                      
23

 Temporal patterns have been observed in public good games even in a stranger situation, i.e., when 
subjects face different group members in each repetition of the game. Usually, these patterns are 
interpreted as evidence of the existence of conditional cooperators (see, for example, Keser and van 
Winden 2000). In treatment 1, which has only one Nash equilibrium, the existence of a proportion of 
conditional cooperators would imply a decay in the share of cooperators in later rounds. However, as 
Figure 2 shows, we do not observe such behavior. In treatments 2 to 4, which have multiple Nash 
equilibria, it is not clear the temporal pattern implied by conditional cooperators. Indeed, in these 
treatments, players face a coordination problem, which mean that the best response function is to 
cooperate only if the share of cooperators is above some tipping point. It might be the case that initially 
conditional cooperators cooperate even when the expected share of cooperators is below the tipping 
point. This would induce higher cooperation than predicted by the model and no temporal pattern. 
Indeed, as Table 4 shows, there is a higher share of cooperators than predicted by the model (especially 
when we use a uniform distribution for prior beliefs). As Figure 2 indicates, for treatments 2 to 4, there is 
no temporal patterns in the mean share of cooperators.  
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Subjects who reported prior beliefs 

 

 

Subjects who did not report prior beliefs 
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Note: Red diamonds denote the average values of the variable per treatment/round 

within treatment. Blue bars indicate one standard deviation from the mean, calculated 

in standard form. 

 

Summing up, there are two mechanisms operating simultaneously that induce a higher 

predicted share of cooperators. First, as  ̂ decreases, subjects raise their assessments 

of the expected share of cooperators (the belief effect). Second, given any distribution of 

the assessments, a lower  ̂ raises the assessments that induce subjects to contribute 

(the range of cooperation effect). Except when we move from    to   , both 

decompositions lead to similar results. 

 

8. Conclusions 

We have conducted a laboratory experiment in order to test the main implications of the 

stability-sets methods as applied to collective action games. We have found strong 

support for the key comparative static predictions of the theory. As we increase the 

payoff of a successful collective action accruing to all players ( ) and only to those who 

contribute ( ), the share of cooperators and payoffs both increase. As in many other 

laboratory experiments, we found that subjects behave more cooperatively than is 
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predicted by the theory. But we have also shown that the gap between theoretical 

predictions and observed behavior narrows significantly when we refine the theory by 

allowing for a distribution of prior beliefs that varies with the parameters of the model. 

Overall, the experiment indicates that the stability-sets method could be a very useful 

tool for studying games with multiple equilibria. 

 

The experiment also suggests a refinement of the theory. We found that, as the range of 

cooperation increases, subjects upgrade their prior beliefs relating to the expected share 

of cooperators. We have shown that if the new distribution of prior beliefs first-order 

stochastically dominates the preceding one, then the signs of the comparative static 

derivatives are not affected, but all effects are magnified. For practical purposes, this 

refinement improves the power of the theory to predict the observed behavior. 

Analytically, it allows us to decompose the mechanism that produces cooperation into a 

”belief effect” and a ”range of cooperation effect”. Using our experiment, we have 

computed these decompositions and have found evidence of the presence of both effects. 

This may have interesting political economy implications. For example, a policy change 

that affects the payoffs of a collective action game can produce a bigger change in the 

likelihood of cooperation than what we would expect if we did not take the fact that 

agents update the distribution of prior beliefs into account.  

 

Understanding the logic of collective action is crucial in terms of political economy. 

Explicitly or implicitly, collective action is a core component of many models of political 

influence, political representation and coalition formation. A new approach to collective 

action can produce significant impacts in terms of the way that we approach those 

topics. To illustrate this point, consider the following examples. In the standard common 

agency model of lobbying (Dixit, Grossman and Helpman, 1997 and Grossman and 

Helpman, 2000), it is assumed that groups are either organized (meaning that the group 

has solved the collective action problem and can lobby to advance its members’ common 

interests) or unorganized. The stability-sets approach can serve as the basis for an 

assessment of the likelihood that a group is organized as a function of structural 

parameters that characterize the collective action problem of group organization. Thus, 

by combining the common agency model of lobbying with the stability-sets approach to 

collective action, we can build a more accurate theory of political influence. Another 
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interesting example is provided by Acemoglu’s and Robinson’s model of political regime 

determination (Acemoglu and Robinson, 2006). This is a dynamic model in which, with 

some exogenous probability, in every period a group with no de jure political power can 

organize and obtain de facto political power. Again, combining this model with the 

stability-sets approach to collective action can help us to refine the theory of political 

transitions. 
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Online Appendix 1: Proposition 1 

In this appendix we present the proof for proposition 1. 

Olson’s model: The expected payoff for players i is given by: 
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, the unique Nash equilibrium is    for all i.   

Schelling’s model: A Nash equilibrium is a profile   such that, for all        , one 

of the following conditions must hold: 
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Lemma 1: If      and     , then                . Proof: Since players’ 

strategies are not correlated, the probability that     players cooperate when we 

exclude   is equal to the probability that   players cooperate when we exclude   

and   times the probability that i cooperates plus the probability that     players 

cooperate excluding   and   times the probability that i does not cooperate. Formally, 
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The third line uses     . Again, since strategies are not correlated, the probability that 

k players cooperate when we exclude i and h is equal to the probability that     

players cooperate when we exclude i times the probability that h cooperates plus the 

probability that k players cooperate excluding i and h times the probability that h does 

not cooperate. This justifies the fourth line. Finally, the last line is due to     .   

Lemma 2: If       and    , then              . Moreover, if there exist 

    players different from     for which     , then              . Proof: 

Using the same argument we employed in Lemma 1 we have:  
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The second line uses the fact that    (∑          )     (∑            )[     
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    for which     , then     ∑                and, hence,              . 

  

Case 1 (all cooperate): Suppose that      for        . Then,          if and 

only if       and, hence, the Nash conditions become:  

[
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Since      these conditions always hold. Therefore,      for         is always 

a Nash equilibrium. 

Case 2 (nobody cooperates): Suppose that       for        . Then, 

         if and only if     and, hence, the Nash conditions become:  
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These conditions hold if and only if   
   

 
. Thus, if   

   

 
,      for all i is a Nash 

equilibrium. 

Case 3 (some cooperate, some do not cooperate and some play a mixed strategy): 

Suppose that there is a Nash equilibrium in which    players are cooperating,    are 

playing a complete mixed strategy, and         are not cooperating. Without loss 

of generality, assume that      for                      for              

and      for           . Then, for         , we have          if and 

only if            . Thus, the Nash conditions become: 
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For              we have          if and only if          . Thus, the 

Nash conditions become:  
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 +         . Note that the argument does not depend on the existence of a group of 

players who are playing a complete mixed strategy. In other words, if      , the same 

argument holds. Hence, there cannot be a Nash equilibrium in which some players 

cooperate with probability 1 and other players do not cooperate at all. 

Case 4 (all play a mixed strategy): Suppose that            for        . Then 
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Arbitrarily select   and   and, without loss of generality, assume that      . Then, 

from Lemma 2, it must be the case that               for all    . But this leads to 

a contradiction, because ∑     
          

      

 
 and ∑     

          
      

 
 cannot 

simultaneously hold. Thus, in a Nash equilibrium in which all players are playing a 

complete mixed strategy, it must be the case that     ̂         for        . In this 
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The last line uses the fact that the expected value of                  ̂   is 
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Case 5 (some cooperate and some play a mixed strategy): Suppose that there is a 

Nash equilibrium in which    players are cooperating and      are playing a 

complete mixed strategy. Without loss of generality, assume that      for 
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Using the same argument that we employed to prove that if, in a Nash equilibrium, all 

players are playing a mixed strategy, they must play the same strategy, we can prove 

that in a Nash equilibrium     ̃ for all         . As a consequence,        

(
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Case 6 (some do not cooperate and some play a mixed strategy): Suppose that there 

is a Nash equilibrium in which    are playing a complete mixed strategy and      

are not cooperating. Without loss of generality assume            for         , and 
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For            we have          for       . Thus, the Nash conditions 
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Online Appendix 2. Description of the Experiment 

In this appendix we present the script for the general instructions, the instructions given 

to the participants, the quiz and the questionnaire. 

 

Appendix 2.1. Script for General Instructions 

We would like to welcome everyone to this experiment. This is an experiment in 

decision-making, and you will be paid for your participation, in cash, at the end of the 

experiment. Different subjects may earn different amounts. What you earn depends 

partly on your decisions, partly on the decisions of others and partly on chance. 

The entire experiment will be conducted through computer terminals, and all 

interaction between participants will take place through the computers. It is very 

important for you not to talk or to try to communicate with other subjects during the 

experiment in any way. 

At your workstation, you will find a pencil, a paper with instructions and scratch paper. 

During the experiment you can use the scratch paper to make calculations.  

We will now start with a brief instruction period. During this period, you will be given a 

complete description of the experiment. If you have any questions during the instruction 

period, please raise your hand and your question will be answered so that everyone can 

hear the response. If any difficulties arise after the experiment has begun, raise your 

hand, and one of the persons conducting the experiment will come to assist you.  

You are one of 20 students who have been asked to participate in this experiment. In 

each round you will be randomly assigned to one of two groups, consisting of 10 persons 

each. Then, you will play a computer game, which will appear on the screen, with the 

other members of that same group. At the beginning of each round, the parameters of 

the game will appear on the screen, as will the timing. At the end of the round, you will 

be informed of the result of the game, the points you have earned and the points that you 

have accumulated so far. In the next round, all players will again be randomly assigned 

to one of the two new groups of 10 people each. 

The experiment you are participating in is broken down into four unpaid practice 

rounds and twelve separate paid rounds. At the end of the last round, you will be paid 
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the total amount you have accumulated during the course of the last twelve rounds. Your 

profit is denominated in POINTS. Your PESO profit is determined by multiplying your 

earnings in points by a conversion rate. In this experiment, the conversion rate is 2 

pesos to 1 point.24 Everyone will be paid in private and you are under no obligation to 

tell others how much you earned. 

Please read the instructions that you will find on your desktop carefully. You have 10 

minutes. Please, remember that if you have any questions, you should ask them aloud. 

 

Appendix 2.2. Instructions 

1. In each round you receive ONE point. You can keep it for yourself or invest it in a 

common fund. You have 90 seconds to make your decision. When you select an option, 

please press the "Next" button. If, after 90 seconds, you have not selected an option, the 

computer will randomly do it for you. 

2. Once all players have taken a decision, the outcome of the game will appear on the 

screen: If the investment is successful, each of the ten players will receive   points, and 

those who have decided to invest their point will receive   additional points. If the 

investment fails, nobody gets a profit, and those who have decided to invest their point 

will lose the point that they initially invested.  

Therefore:  

 If you have decided to invest your point in the common fund and the investment 

is successful, you will accumulate     points; 

 If you have decided to keep your point for yourself and the investment is 

successful, you will accumulate     points;  

 If you have decided to invest your point in the common fund and the investment 

fails, you will earn 0 points;  

 If you have decided to keep your point for yourself and the investment fails, you 

will earn 1 point. 

                                                      
24 The conversion rate was adjusted by inflation (20% since August). Hence, starting in August, the rate 
was adjusted to 2.4 pesos for 1 point. At that stage, 2 and 2.4 Argentine pesos were equivalent to 
approximately 0.25 and 0.28 dollars, respectively. 
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3. The probability of success of the investment depends on the proportion of players in 

your group who have decided to invest:  

                                  
                                             

  
 

Thus, the greater the number of players who have decided to invest their point, the 

greater is the probability that the investment will be successful. 

For example, if 6 out of 10 participants choose to invest their point in the common fund, 

the chances of success are 60%. If the investment is successful, those six participants 

will get      , and the remaining four will obtain      . However, if the investment 

fails, the six participants who decided to invest their point get 0 units, while the 

remaining four get 1 point.  

Let us suppose that, in another case, only 2 out of 10 players decide to invest their points 

in the common fund. Therefore, the chances of success are 20%. If the investment is 

successful, those two participants will get      , and the remaining eight will obtain 

     . However, if the investment fails, the two participants who decided to invest their 

point will get 0 units, while the remaining eight will get 1 point. 

At the end of each round, you will be told how many players have decided to invest their 

point in the common fund, whether the investment was successful or not, the gain in the 

round, and the total amount of points accumulated from the fifth round onward. To end 

the round, you will need to press the "Next" button.  

At the beginning of the next round, you will be randomly assigned to a new group. Pay 

attention because the parameters of the game may have changed. That is, in each round, 

  and / or   may vary.  

After the sixteenth, round you will be asked to answer a few questions about you. 

Finally, when you click "Finish", the screen will display a WORD. It is IMPORTANT to 

remember this word because you have to present this password to the person who was 

running the experiment in order to receive your payoff. 

 

Appendix 2.3. Belief Questions 

The following script provides a sample of the questions that subjects were asked about 

their beliefs before starting the game. 
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Screen: Before you begin to play, we would like to ask you some questions about the 

experiment. These questions are for information purposes only, and there is no right or 

wrong answer. You will not be paid for answering them. 

1. Suppose that          and      : How many players out of a group of 10 persons 

do you think will invest their point in the common fund? [11 options]. 

2. Suppose that          and         : How many players out of a group of 10 

persons do you think will invest their point in the common fund? [11 options]. 

3. Suppose that       and         : How many players out of a group of 10 persons 

do you think will invest their point in the common fund? [11 options]. 

4. Suppose that       and         : How many players out of a group of 10 persons 

do you think will invest their point in the common fund? [11 options]. 

 

Appendix 2.4. The Quiz 

After a general explanation of the rules of the game, subjects took the following quiz:  

1. Suppose the following parameters of the game:       and      . If all players, 

including you, decide NOT to invest their point in the common fund and the investment 

fails, how many points do you obtain at the end of this round? [5 options] 

2. Suppose the following parameters of the game:      and      . If all players, 

including you, decide to invest their point in the common fund and the investment is 

successful, how many points do you get at the end of this round? [5 options] 

3. Consider the following two possible games:  

 First game:       and      ; 

 Second game:       and     ; 

If you decide NOT to invest your point and the investment fails, in which of the two 

games do you accumulate more points? [3 options] 

4. If there are 10 players and 8 of them decide to invest their point, what is your best 

option if the parameters of the game are:         and      ? [3 options] 

5. If there are 10 players and 4 of them decide to invest their point, what is your best 

option if the parameters of the game are        and      ? [3 options]  
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Appendix 2.5. Sample Screen 

At the end of each round, subjects were shown a summary of the decisions taken in the 

round and were told whether the investment was successful or not, what the payoff 

obtained in that round was and what their own accumulated payoffs for paid rounds 

was. 

 Screen:  

You have decided (not) to invest your point. 

(1, 2, 3, 4, 5, 6, 7, 8, 9 or all) subjects in your group have decided to invest their 

point. 

The investment was (not) successful. 

Your earning in this round was ____ points. 

You have accumulated ____ points since the start of the game. 

 

Appendix 2.6. The Questionnaire 

Thank you for participating in this experiment! Please complete the following 

questionnaire before leaving. 

Question 1: Gender (male/female) 

Question 2: Age (in years) 

Question 3: Nationality 

Question 4: Whether or not you are fluent in English (Yes/No) 

Question 5: Whether you have ever taken a course in game theory (Yes/No) 

Question 6: Current studies (Graduate/Undergraduate) 

Question 7: Degree in: (a) Economics; (b) Business Administration or Accountancy; (c) 

Finance; (d) Political Science, International Affairs, Humanities or Law; (e) Marketing or 

Human Resources; (f) Other (please specify). 

Question 8: Number of courses out of the total courses in your degree program that you 

have completed successfully. 


